Clustering

Phenotyping chronic tinnitus patients using self-report questionnaire data: cluster analysis and visual comparison

Knowledge of different disease phenotypes can help understand (a) which patient subpopulations seek treatment and (b) the response to treatment within each subgroup. In this paper, we presented a workflow to (i) determine distinct phenotypes of medical conditions in high-dimensional data, (ii) visualize these phenotypes to explore and compare essential subpopulation characteristics, and (iii) interactively inspect them and their change over time with an interactive web application. We evaluated our workflow by identifying four distinct phenotypes of tinnitus patients.